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PathLAKE
Partners in Computational Pathology Excellence

Who we are

• 14 NHS, University and Industry partners

• Original investment >£15m (Jan 2019 to Mar 2023)

• UKRI grant funding £10m 

• Philips investment £4m 

• Matched funding from industry and academic partners

• OLS Scale-up funding £13.5m (Jan 2020 to Sept 2023)

Our objectives

• Digitise 22 NHS labs 

• Create a data lake of annotated WSI & metadata

• Facilitate the development of AI tools

• Implement AI into clinical practice



1. East Midlands 7 m
2. Oxford South 4.2 m
3. Peninsular group 1.7 m
4. Southampton and Dorset 1.5 m
5. Cambridge Norfolk Suffolk 3.1 million
6. Bristol Gloucester Bath pop. 1.8 m
7. Coventry Warwick 0.7M
8. Royal Marsden TBC

PathLAKE Plus - Digital Pathology at scale

Digitise workflow and deploy AI

• All sites contribute to PathLAKE
• X4 AI solutions for all sites
• Data from AI goes into 

PathLAKE
• Real-world analysis of AI in 

practice
• Cohorts for algorithm 

validation

AI procurement
Select use cases

Divide use cases between hub trusts
Case specific specification

Framework mini competition
Each use case transferable across PathLAKE Plus 

PathLAKE Plus – AI in practice at scale





PathLAKE Plus AI requirements
• Prostate cancer

• Tumour detection
• Tumour grading
• Tumour volume and number of cores affected
• Perineural invasion

• Lymph node metastasis detection
• Metastasis detection all solid tumours any node site
• Micro metastases, and isolated tumour cells

• Breast cancer
• Tumour detection
• Tumour grading
• ER, PR, HER2, Ki 67 scoring

• Gastric cancer
• Tumour detection

• Skin
• Melanoma versus naevus detection
• Common tumour detection 
• Tumour depth, volume, margin clearance
• Vascular invasion perineural invasion

• Ki 67
• PD-L1

• Regulatory approval
• MHRA UK/CA, CE IVD, FDA

• Health economics data
• Ethnic group data
• Domain shift data
• Interoperability between platforms
• Deployment plan

• Viable deployment plan
• Expandable to multiple sites
• Accommodate increasing test requests
• Aligns with multiple other AI  tools
• Aligns with workflow

• Equal access
• Access for all sites
• Same terms for grant funded self funders

• Fixed terms for 6 years
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Machine learning -
to annotate or not to annotate

• Most supervised ML algorithms require lots of annotations, often a costly and laborious process
• Annotation protocols

– Slide level
– Region level
– Cell level

• Computational ways around:
– Weakly supervised learning (requires only slide- or case-level labels)
– AI-assisted annotations
– AI- derived annotations
– Synthetic images, with annotations



Annotation 
Protocols

Wahab et al. (J Clin. Pathol. Res. Dec 2021)

What to annotate?
How to annotate?
How to QC annotations?
How much to annotate?



Interactive Region Segmentation

Jahanifar et al., ICCV CDPATH, 11 Oct 2021 Best Paper Award









NuClick: AI-Assisted Annotations

Koohbanani et al., Medical Image Analysis (Oct 2020) & Gamper et al., Arxiv (Apr 2020)

PanNuke: A dataset of 200K+ pan-cancer nuclei for nuclear 
segmentation and classification, where NuClick was used for 
collecting the segmentation masks

https://warwick.ac.uk/fac/cross_fac/tia/software/



877

COBIx version weakly supervised
Iterative Draw and Ranks Sampling (IDARS)

IDa RS (Bila l e t  a l., La nce t  Digit a l Hea lt h , Oct  2021)

AUROC va lu e s

Norm al vs Abnorm al: 0.96

Norm al vs Neoplastic: 0.99

Norm al vs Non-Neoplastic: 0.94



















Good concordance

Pathologist 1 Pathologist 2

Inflammatory Inflammatory



Poor concordance

Pathologist 1 Pathologist 2

Inflammatory
Inflammatory

Adenocarcinoma



Supervised learning approach
Interpretable Gland-Graphs using a Neural Aggregator

IGUANA.



(AUROC) curve of 0.9783 ± 0.0036 



Annotations for cellular pathology

• Regions of interest 
• Key diagnostic areas
• Key prognostic information
• Areas of uncertainty
• Counting of cells
• Counting mitoses

• Record observations
• Highlight important features
• MDT review
• Peer review and discussion
• Measure parameters needed
• Case summary



Why standardize?

• Improves communication
• More efficient slide review
• Appropriate tool for the task
• Better designed tools improves pathologist’s experience
• Translation between systems 

• Improve interoperability

• Simplifies selection of slides for research



How do we do it?

• Construct a library of annotations
• Define the annotation needed for each task
• Assign motif design and size
• Define additional functionality needed
• Allocate SNOMED CT code
• Allocate colour with Hex code
• Prevent / eliminate duplication
• Publish standard



Cellular pathology annotation requirements
Annotation group Motif pattern units

Area measurement polygon mm2

Linear measurement line mm

Region of interest ellipse N/A

Anatomical boundary 
breach

ellipse N/A

Surgical margin ellipse N/A

≤ Cell level object circle N/A

> Cell level object circle N/A









Item Data Slide

Depth of invasion 0.9 mm A3

Deep margin 32 mm A3

Radial margin 5 mm A1

Mitotic count 6 per mm2 A3, A4, A6



Slide Normal Abnormal Area 
mm2

A3 3 1 3.34

A4 1 0 1.23

A6 0 1 2.30

6 mitoses 6.87mm2 2 mitoses per 2mm2



Station Nodes Involved Slide

7 2 0 A1, A2

4L 1 0 B1

4R 1 1 C1

Lymph node stage pN2
(Lung TNM8)



Summary

• Annotations are important
• Pathologists apply them routinely at reporting (Radiologists 

don’t)
• Standardising annotation “motifs” improves their utility
• Coding these annotations makes them retrievable
• Better design of annotation tools is attractive to pathologists
• Work with pathologists to understand their needs
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