

Molecular diversity in the resistance interactions of wheat and its fungal pathogens

Powdery mildew and leaf rust disease in wheat

Powdery mildew (Blumeria graminis f.sp. tritici

Leaf rust (*Puccinia triticina*)

Obligate biotrophic ascomycete and basidiomycete pathogens, respectively.

About 10 % of the potential wheat production is lost by diseases (Oerke 2010, Savary et al. 2019)

RESEARCH ARTICLE SUMMARY

IWGSC, 2018. Science

WHEAT GENOME

Shifting the limits in wheat research and breeding using a fully annotated reference genome

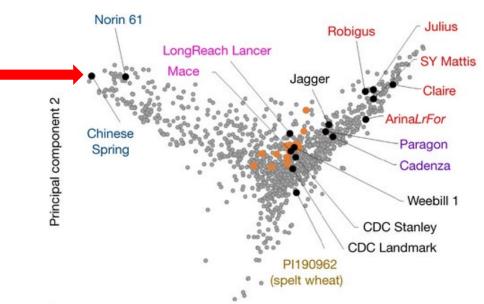
International Wheat Genome Sequencing Consortium (IWGSC)*

The International Wheat Genome Sequencing Consortium (IWGSC)

IWGSC RefSeq principal investigators: Rudi Appels^{1,36}*‡, Kellye Eversole^{2,3}*‡, Catherine Feuillet¹⁷, Beat Keller⁴¹, Jane Rogers⁶‡, Nils Stein^{4,5}*‡.

Nature 558: 277-283 (2020)

Article


Multiple wheat genomes reveal global variation in modern breeding

https://doi.org/10.1038/s41586-020-2961-x Received: 3 April 2020 Accepted: 9 September 2020 Published online: 25 November 2020 Open access Check for updates

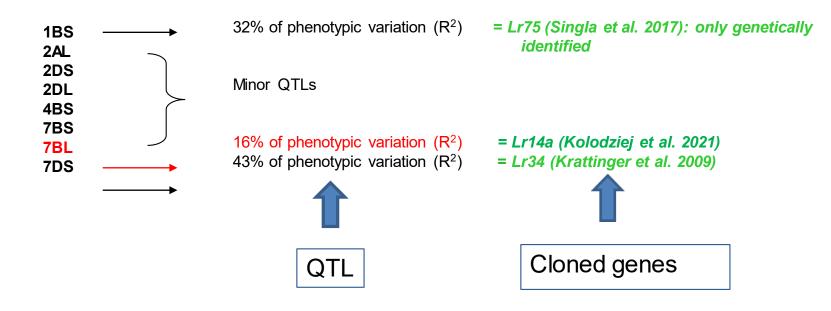
Sean Walkowiak^{12,41}, Liangliang Gao^{2,41}, Cecile Monat^{4,41}, Georg Haberer⁵, Mulualem T. Kassa⁶, Jemima Brinton⁷, Ricardo H. Ramirez-Gonzalez⁷, Markus C. Kolodziej^a, Emily Delorean², Dinushika Thambugala⁹, Valentyna Klymiuk¹, Brook Byrns¹, Heidrun Gundlach⁵, Venkat Bandi¹⁰, Jorge Nunez Siri¹⁰, Kirby Nilsen¹¹¹, Catharine Aquino¹², Axel Himmelbach⁴, Dario Copetti^{19,14}, Tomohiro Ban¹⁵, Luca Venturini¹⁶, Michael Bevan⁷, Bernardo Clavijo¹⁷, Dal-Hoe Koo², Jennifer Ens¹, Krystalee Wiebe¹, Amidou N'Diaye¹, Allen K. Fritz², Carl Gutwin¹⁰, Anne Fiebig⁴, Christine Fosker¹⁷, Bin Xiao Fu², Gonzalo Garcia Accinelli¹⁷, Keith A. Gardner¹⁰, Nick Fradgley¹⁰, Juan Gutierrez-Gonzalez¹⁰, Gwyneth Halstead-Nussloch12, Masaomi Hatakeyama12,12, Chu Shin Koh20, Jasline Deek21, Alejandro C. Costamagna²², Pierre Fobert⁶, Darren Heavens¹⁷, Hiroyuki Kanamori²², Kanako Kawaura¹⁵, Fuminori Kobavashi²³, Ksenia Krasileva¹⁷, Tony Kuo^{34,25}, Neil McKenzie⁷, Kazuki Murata²⁶, Yusuke Nabeka²⁶, Timothy Paape¹², Sudharsan Padmarasu⁴, Lawrence Percival-Alwyn¹⁰, Sateesh Kagale⁶, Uwe Scholz⁴, Jun Sese^{25,27}, Philomin Juliana²⁰, Ravi Singh²⁰, Rie Shimizu-Inatsugi¹⁰, David Swarbreck¹⁷, James Cockram¹⁰, Hikmet Budak²⁰, Toshlaki Tameshige¹⁵, Tsuyoshi Tanaka²³, Hiroyuki Tsuji¹⁶, Jonathan Wright¹⁷, Jianzhong Wu²³, Burkhard Steuernagel⁷, Ian Small²⁰, Sylvie Cloutier²¹, Gabriel Keeble-Gagnère²², Gary Muehlbauer¹⁹, Josquin Tibbets²², Shuhei Nasuda²⁶, Joanna Melonek²⁰, Pierre J. Hucl¹, Andrew G. Sharpe²⁰, Matthew Clark¹⁶, Erik Legg²², Arvind Bharti²², Peter Langridge²⁴, Anthony Hall¹⁷, Cristobal Uauy⁷, Martin Mascher^{4,25}, Simon G. Krattinger^{8,26}, Hirokazu Handa^{23,27}, Kentaro K. Shimizu^{13,15}, Assaf Distelfeld²⁸, Ken Chalmers²⁴, Beat Keller^a, Klaus F. X. Mayer^{5,29}, Jesse Poland³, Nils Stein^{4,40}, Curt A. McCartney⁹⁵⁰, Manuel Spannagl⁵⁵³, Thomas Wicker⁸¹⁸ & Curtis J. Pozniak¹⁸⁸

Principal component 1

Cereals have an enormous genetic diversity in the gene pools of wild progenitors and domesticated crops which are largely unexplored => A rich resource for the identification of novel resistance genes

Gene isolation from elite material: Durable leaf rust resistance in the Swiss cultivar 'Forno'

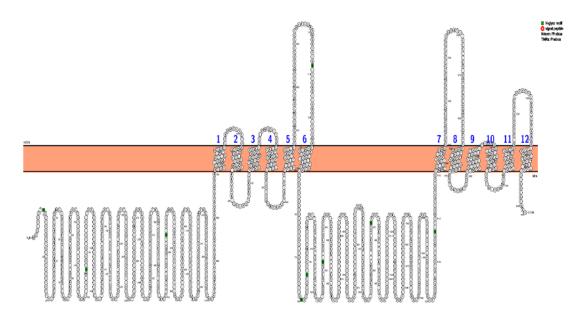
Resistance in cv. Forno is quantitative and has been durable over many years in Europe



cv.'Forno': Swiss winter wheat, durably resistant

cv. 'Arina': Swiss winter wheat, susceptible

Quantitative and durable leaf rust resistance in cultivar Forno: identification of molecular components underlying resistance


QTL analysis revealed **8 chromosomal regions** contributing to the quantitative and durable leaf rust resistance in population of 240 recombinant inbred line population derived from a cross "Arina" x "Forno":

Schematic model of Lr34 protein

Lr34 is functionally transferable across all major cereals

Lr34: an ABCG transporter

Structural model of the LR34 protein: an ABCG-type of transporter (Krattinger et al. 2009)

Lr34 is likely an ABA (abscisic acid) transporter (Krattinger et al. 2019, Bräunlich et al. 2021)

maize

<u>maize rust</u> (*Puccinia sorghi*) biotrophic

northern corn leaf blight (Exserohilum turcicum) hemi-biotrophic

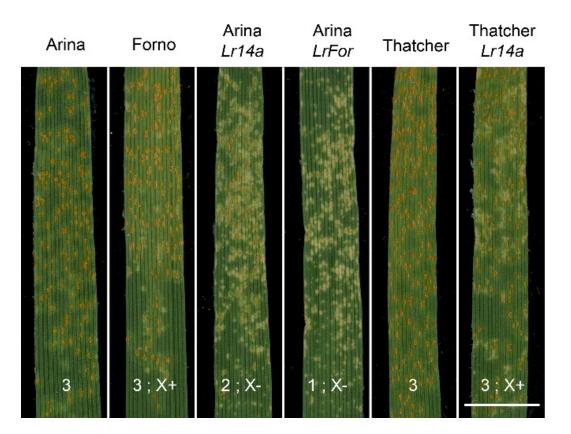
Sucher et al. 2017 Plant Biotech. J.

<u>rice blast</u> (Magnaporthe oryzae) <u>hemi-biotrophic</u>

Krattinger et al. 2016 Plant <u>Biotech</u>. J.

barley

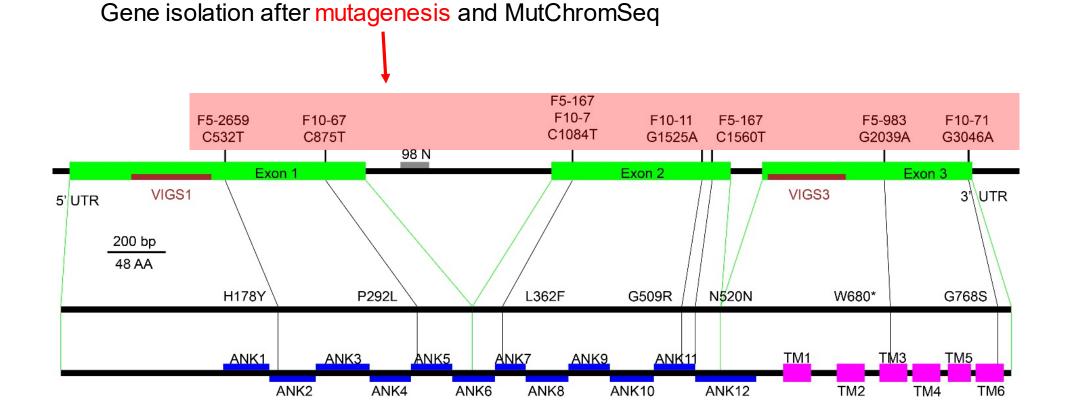
<u>barley leaf rust</u> (*Puccinia hordei*) biotrophic

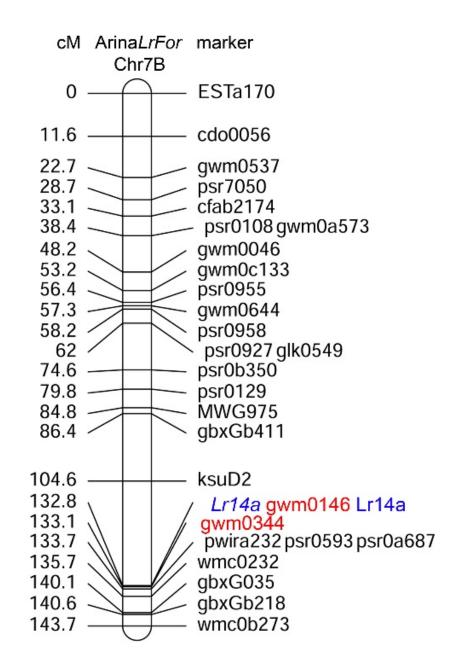

barley powdery mildew (Blumeria graminis f.sp. hordei) biotrophic

<u>stem rust</u> (*Puccinia graminis* f.sp. *tritici*) <u>Biotrophic</u>

Risk et al. 2013, Plant Biotech. J. Harsh et al. 2015, Plant J.

The QTL on chromosome 7BL confers a rust resistance phenotype very similar to the seedling resistance gene *Lr14a* described 50 years ago

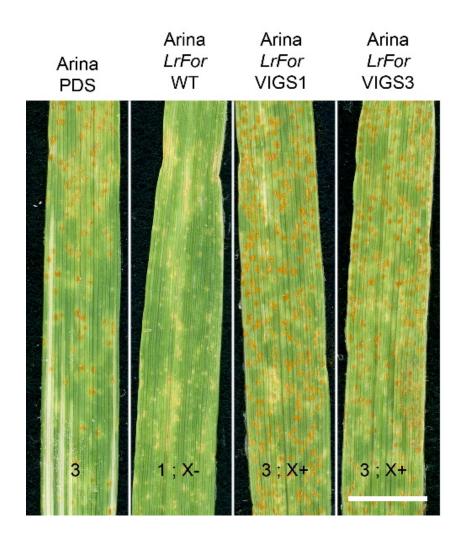

Seedling infections of wheat genotypes Arina, Forno, Arina*Lr14a*, Arina*LrFor*, Thatcher, Thatcher*Lr14a*


Lr14a gives racespecific resistance, i.e. there are virulent and avirulent races (gene for gene interaction according to Flor).

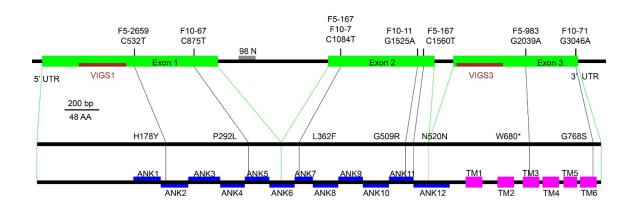
"X" = random distribution of variable-sized uredinia (mesothetic reaction),

Gene and protein structures of Lr14a

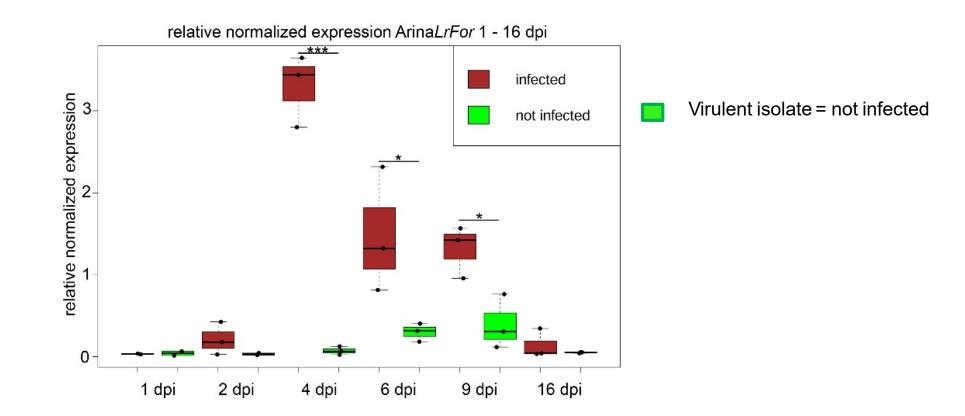
Kolodziej et al. 2021 Nature Communications

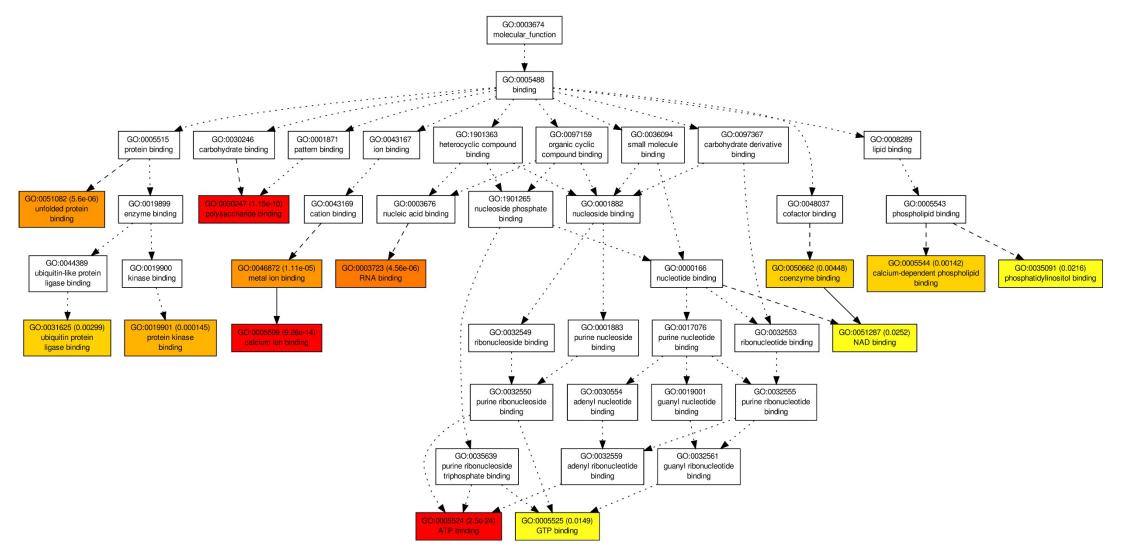


Genetic map of the *Lr14a* gene-specific marker and the *Lr14a* resistance phenotype in a RIL population consisting of 158 genotypes:

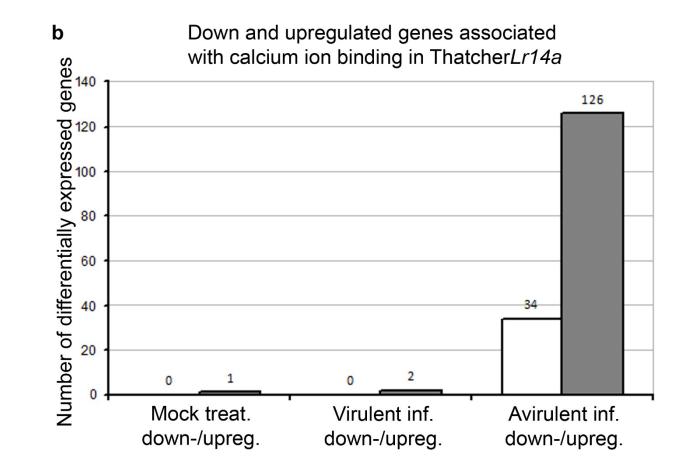

Co-localization of the Forno gene and the *Lr14a* gene as described in the literature

The red markers gwm0146 and gwm0344 are the closest markers associated with Lr14a according to the literature. The gene-specific marker (Lr14a, blue, no italics) and phenotype (Lr14a, blue, italics) of Lr14a both co-segregated with gwm0146.

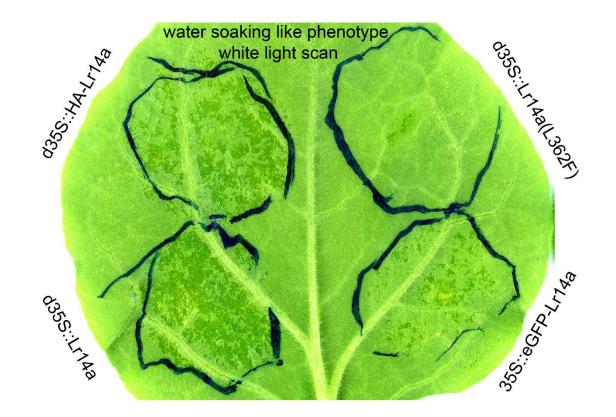

Increased leaf rust susceptibility after silencing the *Lr14a* candidate gene through virusinduced gene silencing


PDS = phytoene desaturase control, WT = barley stripe mosaic virus without silencing construct.

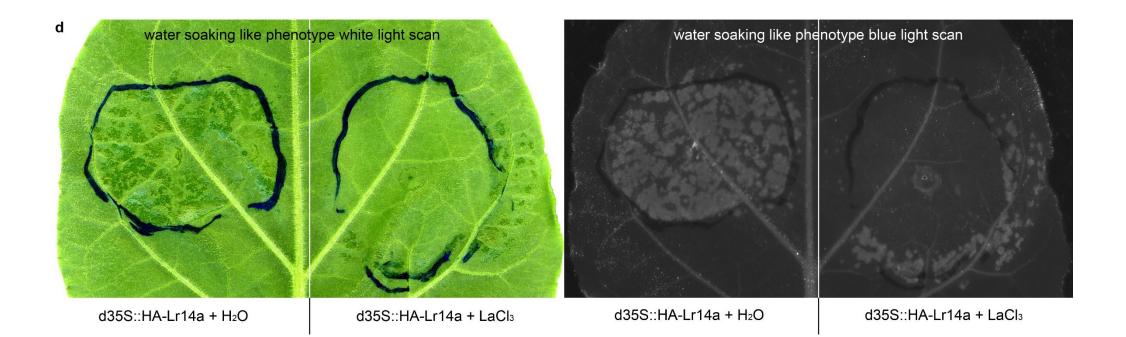
Lr14a is not expressed in the absence of leaf rust or infection with a virulent isolate, <u>but induced by an avirulent leaf rust race</u>



Lr14a expression in Arina*LrFor* with and without infection (brown/green) with the avirulent leaf rust isolate 96209.

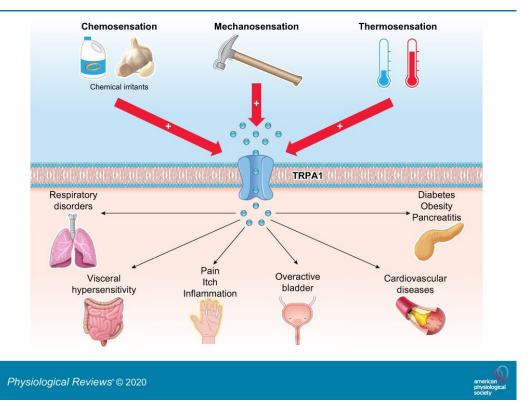


Gene ontology (GO) network graph showing that *Lr14a* causes induction of calcium ion binding associated genes 8 days post inoculation (dpi) in the wheat line Thatcher*Lr14a* compared to Thatcher after inoculation with an avirulent *P. triticina* isolate.


Number of differentially expressed genes that are associated with the GO term "calcium ion binding" in Thatcher*Lr14a* compared to Thatcher after mock treatment and inoculation with a virulent and avirulent *P. triticina* isolate, respectively.

N. benthamiana leaves transiently transformed with *Lr14a* coding sequences: a water-soaking-like phenotype on the lower leaf surface, 3 dpi

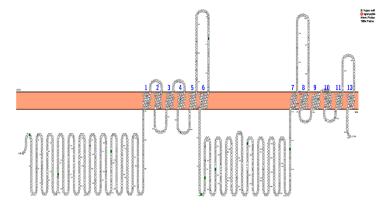
The water-soaking-like phenotype on the lower leaf surface of *N. benthamiana* caused by *Lr14a* overexpression was suppressed by infiltration of 2 mM Lanthanum(III) chloride (LaCl₃), a calcium channel blocker two hours after Agrobacterium infiltration.


Is the Lr14a protein a non-selective Ca²⁺ channel?

Top 10 hits of HHPred analysis of the Lr14a protein

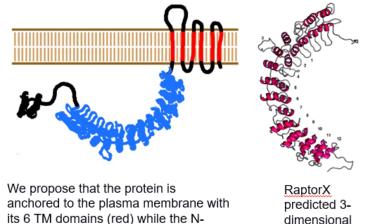
(HHpred is a fast server for remote protein homology detection and structure prediction and implements pairwise comparison of profile hidden Markov models (HMMs))

PDB entry ^a	Description	E-value	<u>Ref^b</u>
5Y4D_A	ANK2, Homo sapiens	9.60E-54	1
6PQQ_D	Transient receptor potential cation channel TRPA1, Homo sapiens	4.20E-52	2
5LEB_A	DARPin DDD_D12_06_D12_06_D12, biosynthetic protein	1.50E-51	3
5Y4D_A	ANK2, Homo sapiens	3.90E-51	1
1N11_A	D34 region of Ankyrin-R, Homo sapiens	8.10E-51	4
3J9P_A	Transient receptor potential cation channel TRPA1t, Homo sapiens	6.60E-49	5
4CJ9_B	BurrH DNA-binding protein, Burkholderia rhizoxinica	5.30E-51	6
4RLV_A	ANK repeat AnkB, Homo sapiens	1.10E-48	7
6MOL_A	Monoextended DARPin M_R12, biosynthetic protein	9.50E-48	8
4CJ9_B	BurrH DNA-binding protein, Burkholderia rhizoxinica	2.20E-50	6


Kolodziej et al. 2021, Nature Communications, supplementary table 3

"The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage."

Additive action of the two resistance genes *Lr34* and *Lr14a* present in the durable rust resistant cultivar 'Forno'



Structural model of the LR34 protein: an ABCG-type of transporter (Krattinger et al. 2009)

Lr34 is likely an ABA transporter (Krattinger et al. 2019, Bräunlich et al. 2021)

Lr14a: an Ank-repeat transmembrane protein

terminal ANK domain (blue) is

cytoplasmic.

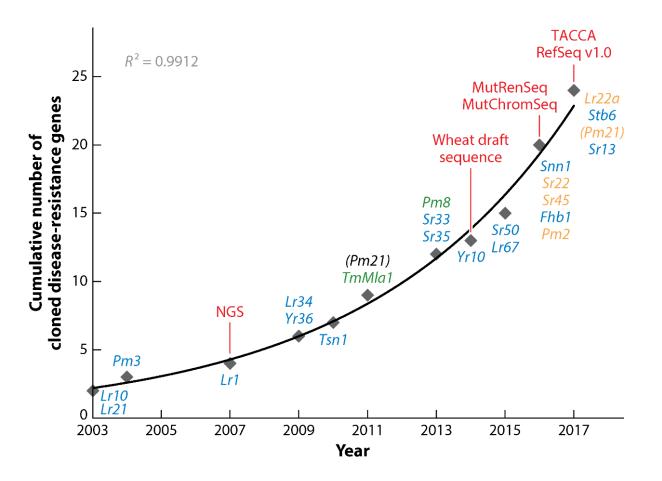
predicted 3dimensional protein structure of the ANK domain of Lr14a.

Future research: What is the molecular basis of the observed additive gene action observed in the field?

No expression of Lr14a after infection with a virulent leaf rust race

Induction by Lr14a after infection with an avirulent leaf rust race

Presence of Lr14a in transient expression is sufficient to confer water-soaking phenotype in *Nicotiana benthamiana*


Homology to non-selective Ca²⁺ permeable cation channels

Similarity to executor genes in bacterial – plant interactions (promoter traps for TAL effectors for Xa27, Xa10, Xa23 resistance genes in rice and Bs3 and Bs4C in pepper against Xanthomonas)

Identified executor genes either encode for proteins with a catalytic function (*Bs3* and *Bs3-E* encode for a putative flavin monooxygenase) or for proteins with multiple putative transmembrane domains (Xa27, Xa10, Xa23, and Bs4C-R).

Markus Kolodziej

Wheat gene catalogue:

Against powdery mildew (*Pm*): > 65 genes

http://www.shigen.nig.ac.jp/wheat/komugi/genes/s ymbolClassList.jsp

Keller B, et al. 2018. Annu. Rev. Phytopathol. 56:67–87

Our goals and selection procedure for isolating powdery mildew resistance genes:

Our goal: identify the proteins involved in resistance interactions both in wheat and the wheat mildew pathogen and characterize their interactions

A focus on the most interesting genes defined by, for example for powdery mildew resistance:

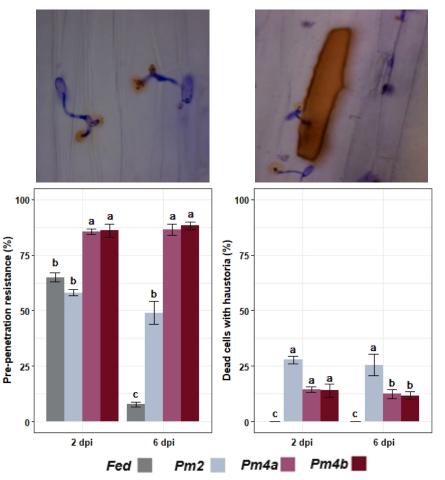
- Allelic diversity
- Genetic source (alien introgression, emmer wheat origin)
- Unusual phenotype
- Any hint in classical literature on unusual genetics (modifiers, suppressors)
- Good genetic material available (ideally near-isogenic lines)

Victoria Geri Widrig Herren

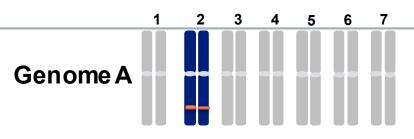
Neidhart

erren Thomas Wicker

Helen Dr. Julier Zbinden Gronier

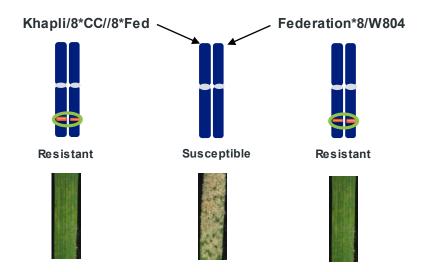

The powdery mildew resistance gene *Pm4* gene in wheat

- Occurs in several allelic variants (*Pm4a d*), of which *Pm4a* and *Pm4b* are genetically best characterized.
- *Pm4a* and *Pm4b* originate from domesticated, tetraploid emmer wheat genotypes and were introgressed into bread wheat
- Near-isogenic lines are available for *Pm4a* and *Pm4b*
- Confers classical, race-specific resistance
- From much of these data, a typical NLR-based resistance could be expected.
- However, introgressions from tetraploid emmer have revealed other gene classes involved in resistance, suggesting that emmer wheat has been an "evolutionary lab" for wheat resistance gene evolution: e.g. tandem kinases (Yr15); kinase-START domain (Yr36)



Pm4-mediated resistance is associated with hypersensitive cell death

- Lower levels of HR than canonical NLR-mediated resistance from *Pm2*
- Pre-penetration component, papilla-based?

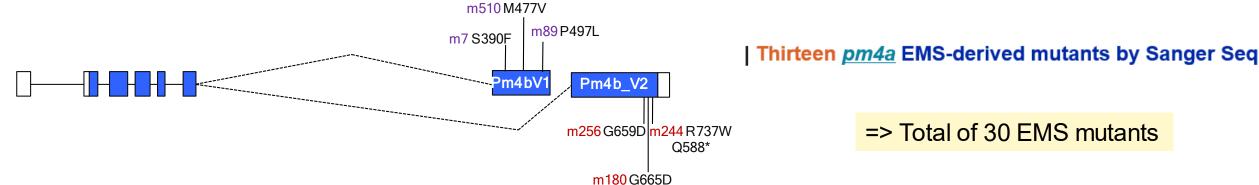


The *Pm4* locus

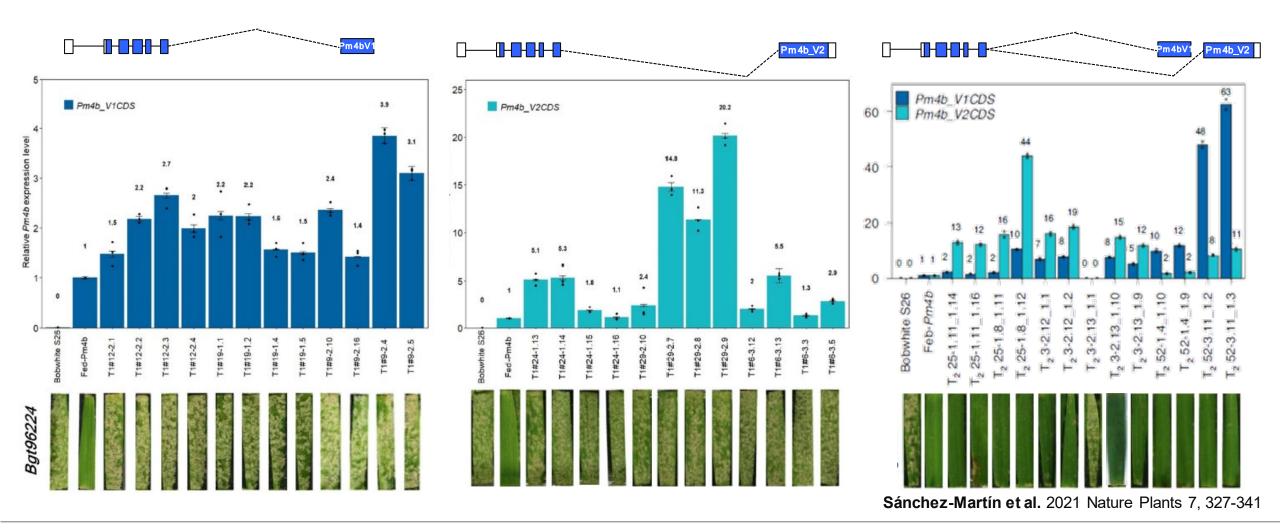
- Mapped on the distal part of the long arm of chromosome 2A
- Our working material are the near-isogenic lines *Pm4a* (Khapli/8*CC/8*Fed) and *Pm4b* (Federation*8/W804)


=> Seven mutants in *Pm4b* identified, and their chromosome 2A was sorted, assembled and compared to the wildtype

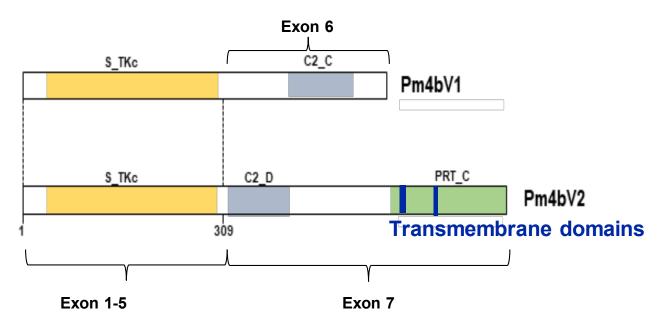
The *Pm4* gene


- MutChromSeq: forward genetic approach based on mutants
- Undergoes constitute alternative splicing -> two transcripts
- Mutants affecting mutually exclusive exons 6 and 7

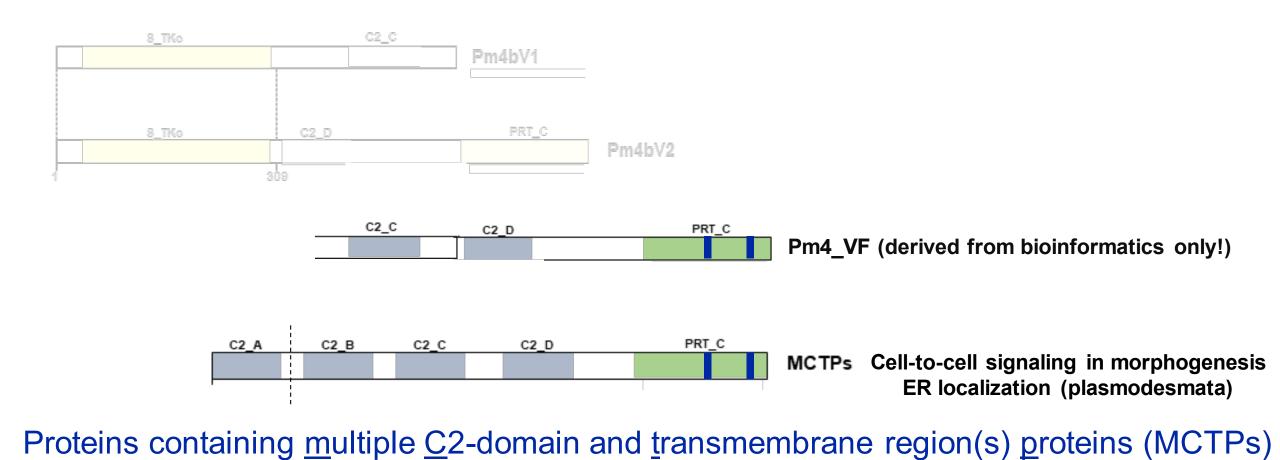
=> Both protein isoforms are required for resistance


Seven pm4b EMS-derived mutants by MutChromSeq

|| Ten pm4b EMS-derived mutants by Sanger Seq

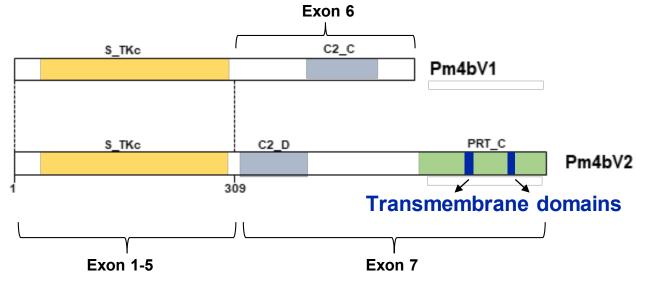


Transgenic seedlings with both splicing variants restore powdery mildew resistance


The *Pm4* gene encodes a resistance protein with a unique domain architecture

Not described in proteins involved in plant immunity

The *Pm4* gene encodes a resistance protein with a unique domain architecture


Not described in proteins involved in plant immunity

The *Pm4* gene encodes a resistance protein with a unique domain architecture

Not described in proteins involved in plant immunity

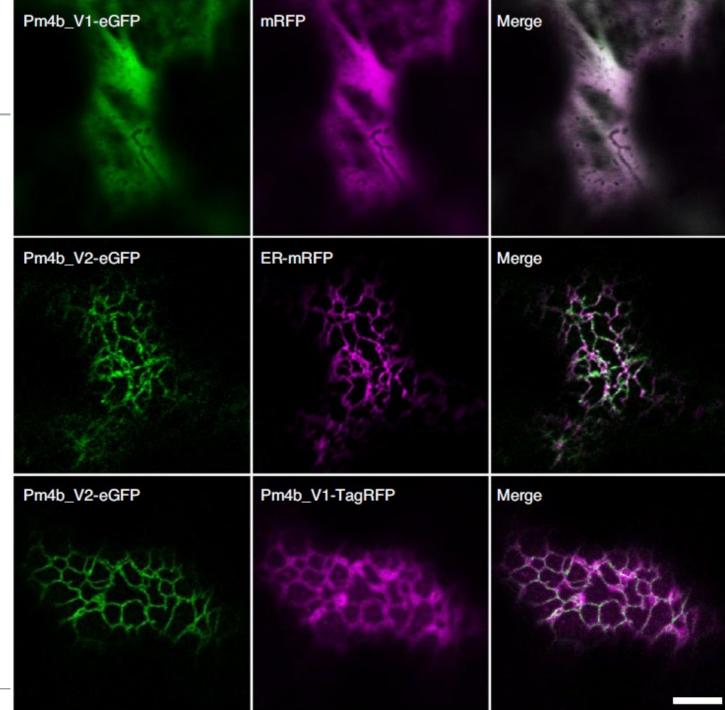
Results from a gene fusion event between a S_TKc and C-terminal part of a MCTP -> Kinase-MCTP



How are these two isoforms working to confer *Pm4*-mediated resistance?

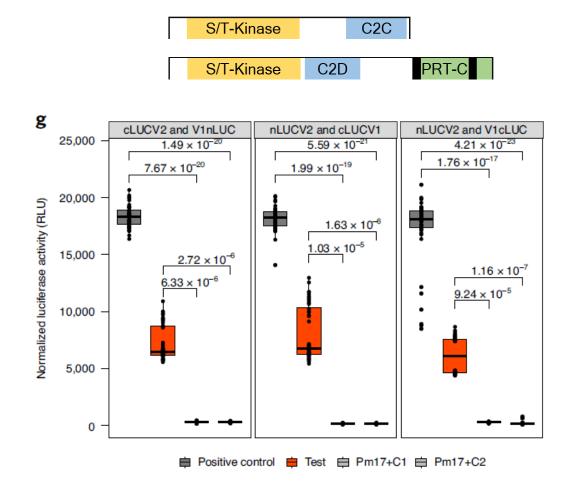
Localization studies revealed...

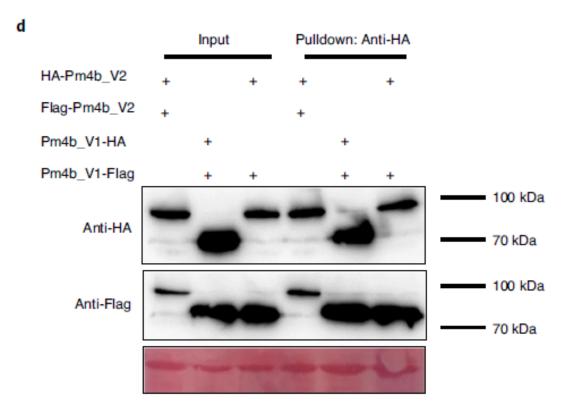
Pm4b_V1 localises to the cytoplasm



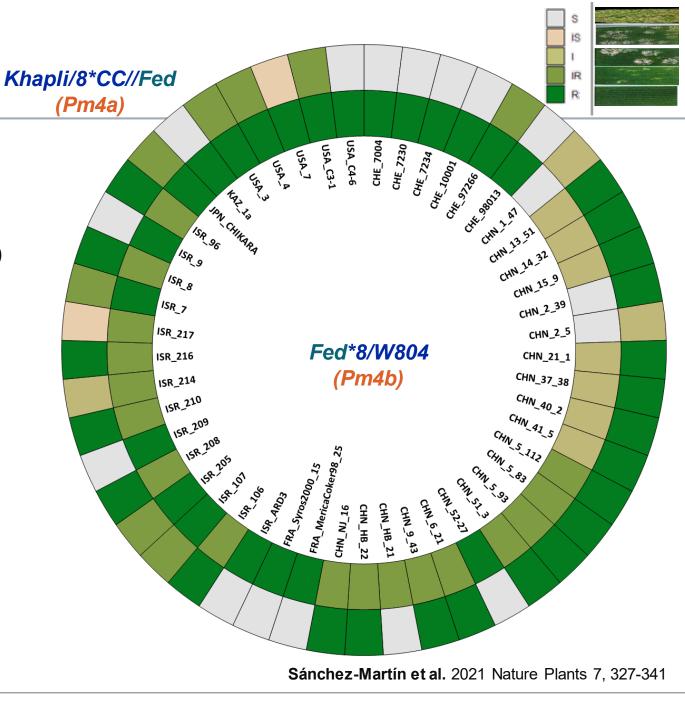
Pm4b_V2 localises to the ER

S/T-Kinase	C2D	PRT-C

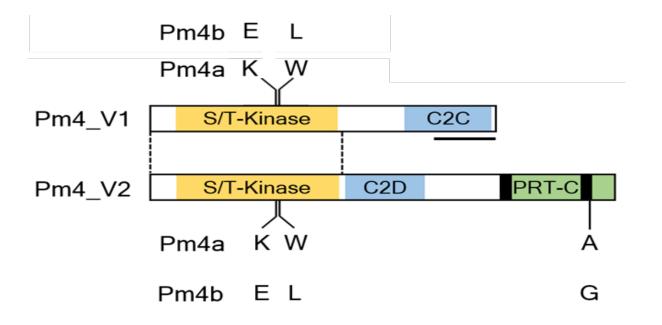

Pm4b_V2 «recruits» Pm4b_V1 from the cytosol to the ER...


Do both protein isoforms interact?

Pm4b_V1 and Pm4b_V2 establish homo- and heteromeric interactions


Sánchez-Martín et al. 2021 Nature Plants 7, 327-341

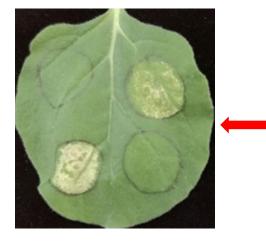
The Pm4 gene

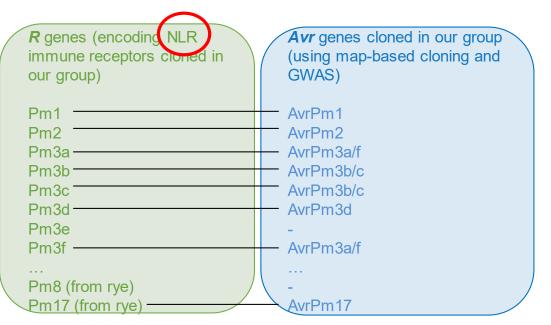

- Mapped on the distal part of the long arm of Chr2A
- *Pm4a* (Khapli/8*CC/8*Fed) and *Pm4b* (Fed*8/W804)

largely overlapping (65 isolates), yet distinct resistance spectrum (42 isolates)

Molecular basis of Pm4a vs. Pm4b specificity

Three polymorphisms between Pm4a and Pm4b


All of them in highly conserved regions of the serine/threonin kinase domain



Summary: The *Pm4* race-specific gene encodes a chimeric kinase-MCTP protein. Its two alternative splice variants interact to form an ER-associated complex and are both essential for resistance function

- The cloning of *Pm4* reveals a new type of immune receptor previously unknown.
- Is it an exception, or is this the first member of an additional gene family that we can use for disease resistance breeding?
- Further biochemical characterization of the Pm4 resistance complex and possible interacting partners.
- Pm4a/b originate from tetraploid wheat.

Lr14a, Pm4, WTK4 all are non-NLR, race-specific immune receptors

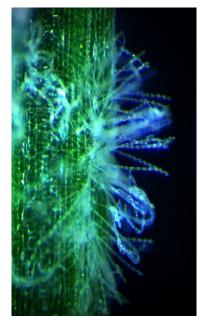
•	Sanchez-Martin	et al.	2016,	Genome	Biology
---	----------------	--------	-------	--------	---------

- Yahiaoui et al. 2006, Plant J.
- Hurni et al. 2013, Plant J.
- Singh et al. 2018, Plant J.
- Hewitt et al. 2021, New Phytologist

Other *Pm* genes cloned:

- Pm21: Xing et al./He et al. 2018; Mol. Plant;
- Pm60: Zou et al. 2018, New Phytologist
- Pm24: Nature Communications 2020

- Müller et al. 2021, bioRxiv, in revision
- Hewitt et al. 2021, New Phytologist
- Bourras et al. 2015, Plant Cell
- Praz et al. 2017, New Phytologist
- Bourras, Kunz, et al. 2019, Nature Communications


Pm12, unpublished Pm5e, Pm41: New Phytologist 2020 Pm38: Krattinger et al. 2009

Lr14a, Pm4, WTK4 all are non-NLR, race-specific immune receptors

What are the avirulence genes in the pathogens that induce racespecific resistance?

AvrLr14a AvrPm4a,b AvrWTK4

R genes (encoding NLR immune receptors cloned in our group)	Avr genes cloned in our group (using map-based cloning and GWAS)
Pm1 Pm2 Pm3a Pm3b Pm3b Pm3c Pm3d Pm3d Pm3e	AvrPm1 AvrPm2 AvrPm3a/f AvrPm3b/c AvrPm3b/c AvrPm3d -
Pm3f Pm8 (from rye) Pm17 (from rye)	AvrPm3a/f - AvrPm17

- Sanchez-Martin et al. 2016, Genome Biology
- Yahiaoui et al. 2006, Plant J.
- Hurni et al. 2013, Plant J.
- Singh et al. 2018, Plant J.
- Hewitt et al. 2021, New Phytologist

Other *Pm* genes cloned:

- Pm21: Xing et al./He et al. 2018; Mol. Plant;
- Pm60: Zou et al. 2018, New Phytologist
- Pm24: Nature Communications 2020

- Müller et al. 2021, bioRxiv, in revision
- Hewitt et al. 2021, New Phytologist
- Bourras et al. 2015, Plant Cell
- Praz et al. 2017, New Phytologist
- Bourras, Kunz, et al. 2019, Nature Communications

Pm12, unpublished Pm5e, Pm41: New Phytologist 2020 Pm38: Krattinger et al. 2009

Summary

Different genetic resources have allowed us to isolate three novel types of race-specific resistance genes from the wheat gene pool:

- The durable resistance in elite wheat cultivar Forno is partially based on Lr14a, an ankyrin-repeat, transmembrane protein possibly acting as a race-specific executor gene.
- Tetraploid wheat as a source for the evolutionary innovation of the Ser/Thr kinase MCTP chimeric proteins Pm4a and Pm4b

Novel types of race-specific immune receptors reveal possibly novel biological mechanisms in plant immunity. It is important to isolate the corresponding avirulence genes.

UZH

Javier Sanchez-Martin Thomas Wicker Teresa Koller Marion Müller Markus Kolodziej Aline Herger Rebecca Leber Manuel Poretti Lukas Kunz Zoe Bernasconi **Beatrice Manser** Jonatan Isaakson Matthias Heuberger Matthias Neidhart Helen Zbinden Geri Herren Victoria Widrig Johannes Graf Stephanie Bräunlich Jyoti Singla

Cyril Zipfel Philippe Köster Julien Gronnier

NOME

. . .

International Wheat Genome Sequencing Consortium

FNSNF

Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung

Acknowledgments

KAUST

Simon Krattinger and collaborators

All members of the 10+ Genome Project

University of Saskatchewan Curtis Pozniak (Leader of 10+ genome project) and colleagues

John Innes Center Brande Wulff Burkhard Steuernagel

Institute of Experimental Botany, Olomouc Hana Simkova Jaroslav Dolezel

IPK Gatersleben Nils Stein & collaborators

IWGSC International Wheat Genome Sequencing Consortium

erc

2010-2015

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Eidgenossenschaft Federal Office for Agriculture FOAG suisse Svizzera

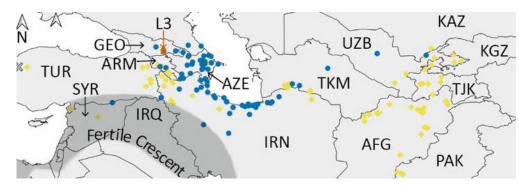
URPP Evolution in Action

Wheat genome sequencing

2003-2025

OPENWILDWHEAT

openwild.org


K. Gaurav S. Arora

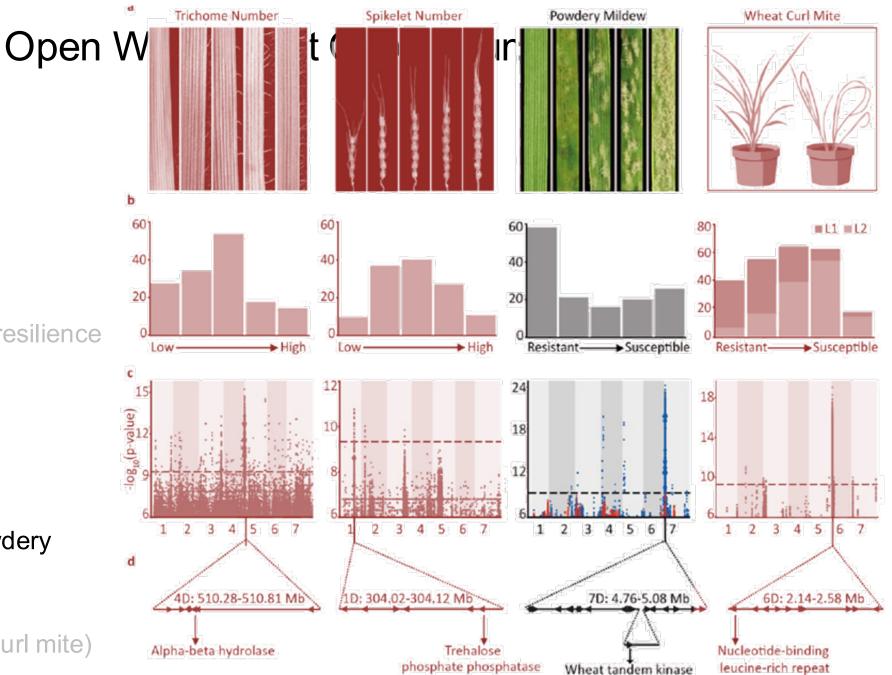
J. Sanchez R. Horsnell

A. Bentley B. Keller J. Poland B. Wulff

Open Wild Wheat Consortium

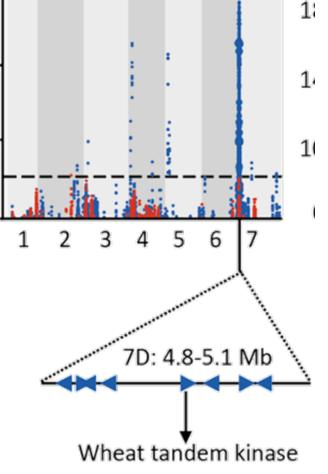
• Ae. tauschii diversity panel (242 accessions)

- WGS short-reading-sequencing
- K-mer-based association mapping


Gaurav, Arora, Silva, Sánchez-Martín, Horsnell et al (2021) Nature Biotechnology

□Targeted transfer of agronomic traits

- Leaf trichomes (a/biotic resilience trait)
- ✓ Spikelet number (yield component)
- Disease resistance (powdery mildew)


✓ Pest resistance (wheat curl mite)

Gaurav, Arora, Silva, Sánchez-Martín, Horsnell et al (2021) Nature Biotechnology.

WTK4 was identified as a candidate gene for powdery mildew resistance

- 24 Powdery mildew resistance mapped to a 300 kb LD block on chromosome arm 7DS 18° 12 Tandem kinase-like domains
- containing eight genes. No NLR immune receptor-encoding gene was detected.
- However, the interval contains a wheat-tandem kinase (WTK), a gene class of the tandem kinase protein (TPK) family previously reported to confer resistance
 - Wheat stripe rust (Yr15), (WTK1) Kymiuk et al. 2018 \geq
 - Stem rust (*Rpg1*) Brueggeman et al. 2002, *Sr60* (*WTK2*) Chen et al. 2020, *Sr62* \geq Yu et al. 2022
 - Wheat powdery mildew *Pm24* (*WTK3*), Lu et al. 2020 \geq

Gaurav, Arora, Silva, Sánchez-Martín, Horsnell et al (2021) Nature Biotechnology.